Radical Nature of C‐Lignin

نویسندگان

  • Laura Berstis
  • Thomas Elder
  • Michael Crowley
  • Gregg T. Beckham
چکیده

The recently discovered lignin composed of caffeoyl alcohol monolignols or C-lignin is particularly intriguing given its homogeneous, linear polymeric structure and exclusive benzodioxane linkage between monomers. By virtue of this simplified chemistry, the potential emerges for improved valorization strategies with C-lignin relative to other natural heterogeneous lignins. To better understand caffeoyl alcohol polymers, we characterize the thermodynamics of the radical recombination dimerization reactions forming the benzodioxane linkage and the bond dissociation into radical monolignol products. These properties are also predicted for the cross-coupling of caffeoyl alcohol with the natural monolignols, coniferyl alcohol, sinapyl alcohol, and p-coumaryl alcohol, in anticipation of polymers potentially enabled by genetic modification. The average BDEs for the Clignin benzodioxane αand β-bonds are 56.5 and 63.4 kcal/mol, respectively, with similar enthalpies for heterodimers. The BDE of the α-bond within the benzodioxane linkage is consistently greater than that of the β-bond in all dimers of each stereochemical arrangement, explained by the ability the α-carbon radical generated to delocalize onto the adjacent phenyl ring. Relative thermodynamics of the heterodimers demonstrates that the substituents on the phenyl ring directly neighboring the bond coupling the monolignols more strongly impact the dimer bond strengths and product stability, compared to the substituents present on the terminal phenyl ring. Enthalpy comparisons furthermore demonstrate that the erythro stereochemical configurations of the benzodioxane bond are slightly less thermodynamically stable than the threo configurations. The overall differences in strength of bonds and reaction enthalpies between stereoisomers are generally found to be insignificant, supporting that postcoupling rearomatization is under kinetic control. Projecting the lowest-energy stereoisomer internal coordinates to longer polymer C-lignin strands highlights how significantly the stereochemical outcomes in polymerization may impact the macromolecular structure and in turn material and chemical properties. Through these comparisons of geometry, bond strengths, and reaction enthalpies, we shed light on the distinctive properties of C-lignin’s radical recombination and decomposition chemistry, and its potential as a natural lignin solution for biorefinery feedstocks and unique materials science applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling the action of chlorine radical: from lab to environment.

The strength of Bz-Cl˙ complexation has been explored using density functional theory (DFT) calculations, including dispersion-corrected (DFT-D) calculations. Of the methods tested, the ωB97X-D method seems the best performing, along with the previously tested MPW1K method. The effect of substituent (X = NO(2), F, Cl, Br, H, CH(3), OCH(3), OH, NH(2) and N(CH(3))(2)) on the stabilities of the Ar...

متن کامل

Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw

Due to the enormous abundance of lignin and its unique aromatic nature, lignin has great potential for the production of industrially useful fuels, chemicals, and materials. However, the rigid and compact structure of the plant cell walls significantly blocks the separation of lignin. In this study, wheat straw was hydrothermally pretreated at different temperatures (120-200 °C) followed by pos...

متن کامل

Nature and kinetic analysis of carbon-carbon bond fragmentation reactions of cation radicals derived from SET-oxidation of lignin model compounds.

Features of the oxidative cleavage reactions of diastereomers of dimeric lignin model compounds, which are models of the major types of structural units found in the lignin backbone, were examined. Cation radicals of these substances were generated by using SET-sensitized photochemical and Ce(IV) and lignin peroxidase promoted oxidative processes, and the nature and kinetics of their C-C bond c...

متن کامل

Improvement of catalytic performance of lignin peroxidase for the enhanced degradation of lignocellulose biomass based on the imbedded electron-relay in long-range electron transfer route

BACKGROUND Although lignin peroxidase is claimed as a key enzyme in enzyme-catalyzed lignin degradation, in vitro enzymatic degradation of lignin was not easily observed in lab-scale experiments. It implies that other factors may hinder the enzymatic degradation of lignin. Irreversible interaction between phenolic compound and lignin peroxidase was hypothesized when active enzyme could not be r...

متن کامل

Characterization of the lignin polymer in Brassicaceae family

Background and objectives: Residues of medicinal plants after extraction and weeds are suitable candidates for bioethanol production. Significant barriers exist to make the conversion of lignocellulosic feedstock to biofuel cost effective and environmentally friendly; one of which is the lignin polymer. Brassicaceae family is one of the potential targets for biofuel production....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016